
A Minimization Package for HEPA Minimization Package for HEP

M. Fischler
D. Sachs, M. Paterno, W. Brown

A Minimization Package for HEPA Minimization Package for HEP

Meant to replicate and extend Minuit
– Same philosophy – ideally suited for HEP fitters

C++ from the start
Adherence to accepted OO design
considerations
– Advantages from user standpoint
– Advantages for internals

“Stand-alone”
Focus on being easy to extend and maintain

A Minimization Package for HEPA Minimization Package for HEP

Why do this?
What should the package do and be?
Concepts that Minuit deals with
Subsystems in the new package
New concepts the package will handle
Some design considerations

Why Do This?Why Do This?

Physicists have two categories of
reactions
– “It’s about time we had this”
– “Are you out of your mind?

Somebody must already have done this!”

But is a suitable minimization package
really available?

C++ minimization via Minuit wrappersC++ minimization via Minuit wrappers

Root has minimization
– f2c followed by some hand code cleaning
– some OO features available (e.g., multiple

problems at once)
– maintainability and extensibility likely to be tough
– some prefer to avoid linking to such large libraries

Gemini
– Wraps either NAG or Minuit
– Minuit form at least is still tied to the Fortran code

Commercial C++ minimization codeCommercial C++ minimization code

The HEP community dislikes the
paperwork involved in paying money,
the licensing issues, and the going-out-
of-business risks
For HEP purposes, Minuit is typically
considered superior
– Evolved specifically to meet HEP needs

Why replicate and extend Minuit?Why replicate and extend Minuit?

Who is maintaining MINUIT?
– Perhaps Minuit does not need

maintenance(?)
– What happens when CERNLIB Fortran

codes start becoming awkward to bring
forward? Will Minuit also fall victim?

Extensibility is importantExtensibility is important

Minuit hasn’t been touched in ~10
years – missing the latest
improvements and innovations
– Algorithms such as linear/quadratic

programming and genetic methods may be
useful

A good minimization framework has
uses outside the classic HEP parameter
fitting problem
Minuit does have known weaknesses

What Would This Package Have To Be?What Would This Package Have To Be?

Mimic Minuit’s behavior
– Precisely the same way, if the user so

chooses
– Improvements should not preclude use of

the original behavior

Obtain classic object-oriented benefits
– independence of sub-systems, and so forth

User interface must be natural and lead
to readable user code

What Would This Package Have To Be?What Would This Package Have To Be?

Easy to use
– Good user documentation
– Limited set of concepts for user to understand

Easy to maintain
– Coding must strive for clarity and readability
– Clear organization of constructs
– Full documentation of algorithms and coding

Easy to extend
– A new good algorithm should not require an

expert C++ developer to insert it.

Concepts in MinuitConcepts in Minuit

Algorithms
Domain
Termination criteria
Solution state
Solution analyzers
User function

AlgorithmsAlgorithms

Strategies that take some starting point
and other information, and move to a
“better” point
Migrad, Simplex, combinations of
strategies, …

The DomainThe Domain

Minuit doesn’t call it “domain”, but this
corresponds to the notion of restricting
the ranges of parameters, and of
fixing/releasing values.
The domain concept is fundamentally a
mapping between an “exterior” space
that the Function works with, and a
simple unlimited Cartesian space that all
algorithms can deal with.

Termination criteriaTermination criteria

Algorithm-originated (point of
diminishing returns)
– Migrad won’t continue if estimated distance

to minimum is less than .001 of its
meaningful change scale

Overall (user criteria)
– Number of function calls, time spent,

estimated accuracy, …

Solution StateSolution State

Minuit has COMMON blocks
We shouldn’t

Solution AnalyzersSolution Analyzers

E.g., Contour

The (user) Function The (user) Function

Minuit assumes function evaluation is
costly
– Bookkeeping activities are relatively quick
– This package relies on that notion as well

There are other possible cases
– Bookkeeping is expensive (millions of

parameters)
– You need billions of minimizations

Decomposition and subsystemsDecomposition and subsystems

Why decompose the package?
– Extensions are localized

E.g., adding a new termination criterion should
not involve Domain or Algorithm or …

– Simplifies testing

What is wanted:
– A well-defined role for each subsystem
– Minimal subsystem interdependence

Identified Subsystems and InteractionsIdentified Subsystems and Interactions

Identified Subsystems and Interactions 1Identified Subsystems and Interactions 1

Problem provides the user interface:
– for associating functions, domains,

termination criteria, and algorithms
– for controlling the steps taken

Algorithm is responsible for
improvement of the best-guess solution

Identified Subsystems and Interactions 2Identified Subsystems and Interactions 2

Domain translates simple coordinates
(used by algorithms) into possibly
restricted coordinates (understood by a
user function), and vice versa
Function subsystem provides the
interface to users’ functions
Termination provides stopping criteria
and means to form compound criteria

Identified Subsystems and InteractionsIdentified Subsystems and Interactions

Sample of Enhanced ConceptsSample of Enhanced Concepts

Generalization of Domain concept
– Minuit supports a particular Domain:

Rectilinear (coordinates are separable)
A specific style of mapping function
Finite or unrestricted ranges per coordinate

– We plan a more flexible Domain concept:
Variety of mapping functions
Semi-infinite ranges per coordinate
Non-separable coordinates (e.g., spherical)

As close as possible, but no closerAs close as possible, but no closer

Because Minuit does something one
way, there is a temptation to do it that
way without thinking about it
– In the extreme, this loses all advantages

over f2c.

Requiring a capability is not the same
as specifying how that capability is to
be achieved

One example patternOne example pattern

How we go about making gradient optional?
– Algorithms that need grad have a way to get it

from calls to f () but prefer to use the grad
directly if available

“switch” pattern
– AL probes f to see if grad is available;
– if not it uses its own technique

Better pattern
– AL requests gradient from Function but supplies

the fallback method
– If the user has overrided gradient () in her

concrete Function class AL gets that
– If not, the gradient () of the base class “calls

back” to the supplied method!

SummarySummary

There is a need for a C++ standalone
minimization package in the HEP
community and elsewhere
Needs Minuit’s capabilities, and more
Development of such a package is
under way

	A Minimization Package for HEP
	A Minimization Package for HEP
	A Minimization Package for HEP
	Why Do This?
	C++ minimization via Minuit wrappers
	Commercial C++ minimization code
	Why replicate and extend Minuit?
	Extensibility is important
	What Would This Package Have To Be?
	What Would This Package Have To Be?
	Concepts in Minuit
	Algorithms
	The Domain
	Termination criteria
	Solution State
	Solution Analyzers
	The (user) Function
	Decomposition and subsystems
	Identified Subsystems and Interactions
	Identified Subsystems and Interactions 1
	Identified Subsystems and Interactions 2
	Identified Subsystems and Interactions
	Sample of Enhanced Concepts
	As close as possible, but no closer
	One example pattern
	Summary

